

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Welcome to Job Submitter’s documentation!

Contents:

	Job Submitter
	Before you start

	Features

	Credits

	Installation
	From sources

	Usage
	Basic workflow

	JSON inputs

	Example JSON input file

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Job Submitter

 [https://pypi.python.org/pypi/mdrun]
 [https://travis-ci.org/jeiros/JobSubmitter][image: Documentation Status]
 [https://JobSubmitter.readthedocs.io/en/latest/?badge=latest][image: https://coveralls.io/repos/github/jeiros/JobSubmitter/badge.svg?branch=master]
 [https://coveralls.io/github/jeiros/JobSubmitter?branch=master]I’ve started developing this Python program to generate the appropriate files for long classic
Molecular Dynamics (MD) runs in the Imperial College HPC facility, using the AMBER MD engine (GPU version).

The objective is to automate the process, so you can chain several jobs and get the results of each one directly
to your machine. No more manual edit of your submission scripts, copying restart files back and forth, etc. All is
needed is to specify the settings of your simulation in a configuration JSON file and then chain the PBS jobs using
dependency on each other.

Maybe this can be useful for other people as well, I think this should be fairly general for other HPC facilities.

Before you start

You need to set up your passwordless ssh [http://www.linuxproblem.org/art_9.html] from your local machine to the HPC.
To test if it works properly, you should be able to scp a file from the HPC to your local machine
and not be prompted for your password. Like so:

$ scp username@HPC-hostname:/home/username/test_file.txt .
test_file.txt 100% 0 0.0KB/s 00:00

You should also check that rsync [https://download.samba.org/pub/rsync/] is available in your HPC cluster,
since it is used to transfer the files (should be available in any Linux distribution, I think).

Create an example input file using the jobsubmitter example command.

	Free software: MIT license

	Documentation: https://JobSubmitter.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Installation

From sources

The sources for Job Submitter can be downloaded from the Github repo [https://github.com/jeiros/JobSubmitter].

You can either clone the public repository:

$ git clone git://github.com/jeiros/JobSubmitter

Or download the tarball [https://github.com/jeiros/JobSubmitter/tarball/master]:

$ curl -OL https://github.com/jeiros/JobSubmitter/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Usage

Basic workflow

Select your settings in the JSON file. There is an example file input_example.json.
You can also generate an input example file with JobSubmitter skeleton.

The code uses Python 3. Test your Python version in your machine with python --version.

Then, use the program with:

JobSubmitter generate_scripts input_example.json

This will generate a series of .pbs files that have to be copied to the HPC along with the launch_PBS_jobs script and the appropriate
files to run the MD job (topology, any restart/inpcrd files, as well as the input files with the MD settings.)

Once you’re in the appropriate HPC directory (the one you’ve specified in the job_directory variable),
submit the jobs with launch_PBS_jobs.

JSON inputs

Scheduler

At the moment only the PBS job scheduler is implemented.

HPC_job

Set this to true if the job is going to be run in the HPC at Imperial. Set to false of leave empty
if you want to run on a local machine that has torque installed.

PBS settings

These settings are used to build the PBS directives [https://www.osc.edu/supercomputing/batch-processing-at-osc/pbs-directives-summary] as headers.

	walltime Specify the walltime to be used in format hh:m:s.

	nnodes Nodes to be used.

	ncpus Number of cores to be used.

	ngpus Number of GPU cards to be used.

	mem Specify the memory (in MB) for the job in the format XXXXmb.

	host Host were the job is going to run.

	queue Queue were the job is going to run. Only two options are supported for the HPC:
	qpgpu for public chemistry department queue

	pqigould for the private queue.

To run on the local machines, there is the ‘long’ queue with a walltime of 192 hours enabled.

	gpu_type The type of GPU to be used.

Simulation details

	system_name The name of your system. This is used throughout the code to give the files matching names.

	inpcrd_file The input coordinates file. This is used if you want to start your simulation from 0. Should end with .inpcrd.

	topology_file The topology file of your system. Should end with .prmtop

	start_rst The restart file that the first job is going to use. If you start from 0 and want to run pre-production commands in the GPU (discouraged), this should match the name of the restart file that is written after your last pre-production run (usually a heating protocol). If you don’t start from 0, this file will be read to start the first job.

	input_file The input file with the MD settings for the production run. You should be specially careful that the timestep (dt) and number of MD steps to be performed (nstlim) match the job_lenght that you want, as the program does not do this for you nor checks if it is correct.

	start_time The time from which you want to launch the simulation (in nanoseconds). Doesn’t necessarily have to be 0 (you can start from an existing simulation, using the appropriate .rst file, as specified in the start_rst variable.)

	final_time The time at which you want your simulation to stop (in nanoseconds).

	job_length The lenght of each individual MD run (in nanoseconds). You should set accordingly the amount of MD iterations and timestep to be used in your MD input file. Also, be careful not to hit the wallclock time.

	job_directory The directory in which the job is going to be run in the HPC. You should launch the launch_PBS_jobs script from here once all the necessary files are in it. This is the directory were all the .pbs & the rest of the input files should be. Also, this is where you issue the launch_PBS_jobs command.

	cuda_version The cuda version to use via module load cuda. This is expected to not changed very frequently.

	binary_location The full path to the pmemd.cuda_SPFP binary (or whatever it’s called). This is expected to not changed very frequently.

	pre_simulation_cmd An indefinite list of commands that you want to run before the production run. These can be run on the HPC or locally. Nothing is assumed here, they’ll be run as is (so if you want them to run in the HPC the binary location should match the one in the HPC, for instance).

	pre_simulation_type Where to run the pre-production commands. Two options are supported:
	cpu: Whatever commands you want to run before the production run are read from the pre_simulation_cmd section in the JSON file and are written to a bash script called pre_simulation.sh which you can then run in your machine.

	gpu: If you want to run the pre_simulation_cmd commands in the HPC. Then they will be used in the first .pbs file. This is not recommended as for some systems GPUs are known to give trouble with minimisations.

Local Machine

	user Your username in your local machine. Find it with the whoami command.

	hostname The hostname of your machine. Find it with the hostname command.

	destination The full path in which the results of the simulations are going to be moved to. This directory should exist before the data copy is attempted, or else it will fail.

Master Node

This is just used if the jobs are run on the local machines.

	user_m Your username on the master node.

	hostname_m The hostname of the master node. Shouldn’t change.

	job_directory_m The job where you’ll launch the .pbs scripts from.

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Example JSON input file

Here’s an input file to get you started:

{
 "scheduler": "pbs",
 "HPC_job": "True",
 "pbs_settings": {
 "walltime": "72:0:0",
 "nnodes": 1,
 "ncpus": 1,
 "ngpus": 1,
 "mem":"1000mb",
 "host":"cx1-51-6-1",
 "queue":"gpgpu",
 "gpu_type":"K80"
 },
 "simulation_details": {
 "system_name": "protein1",
 "inpcrd_file": "protein1.inpcrd",
 "topology_file": "protein1.prmtop",
 "start_rst": "Heated_eq.rst",
 "input_file": "Production_cmds.in",
 "start_time": 0,
 "final_time": 500,
 "job_length": 50,
 "job_directory": "/work/username/protein1",
 "cuda_version": "7.5.18",
 "binary_location": "/path/to/AMBERHOME/bin/pmemd.cuda_SPFP",
 "pre_simulation_cmd": [
 "/path/to/AMBERHOME/bin/pmemd.cuda_SPFP -O -i premin.in -o premin.out -c ${inpcrd} -p ${prmtop} -r premin.rst -ref ${inpcrd}",
 "/path/to/AMBERHOME/bin/pmemd.cuda_SPFP -O -i sandermin1.in -o sandermin1.out -c premin.rst -p ${prmtop} -r sandermin1.rst",
 "/path/to/AMBERHOME/bin/pmemd.cuda_SPFP -O -i 02_Heat.in -o 02_Heat.out -c sandermin1.rst -p ${prmtop} -r 02_Heat.rst -ref sandermin1.rst -x 02_Heat.nc",
 "/path/to/AMBERHOME/bin/pmemd.cuda_SPFP -O -i 03_Heat2.in -o 03_Heat2.out -c 02_Heat.rst -p ${prmtop} -r Heated_eq.rst -ref 02_Heat.rst -x 03_Heat2.nc"
],
 "pre_simulation_type": "gpu"
 },
 "local_machine": {
 "user": "username",
 "hostname": "hostname",
 "destination" : "/Users/username/protein1"
 },
 "master_node": {
 "user_m": "username",
 "hostname_m": "master_node-hostname",
 "job_directory_m": "/home/username/protein1"
 }
}

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jeiros/JobSubmitter/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Job Submitter could always use more documentation, whether as part of the
official Job Submitter docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jeiros/JobSubmitter/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up JobSubmitter for local development.

	Fork the JobSubmitter repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/JobSubmitter.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv JobSubmitter
$ cd JobSubmitter/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 JobSubmitter tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/jeiros/JobSubmitter/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_JobSubmitter

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

 Python Module Index

 j

 			

 		
 j	

 	[image: -]
 	
 JobSubmitter	

 	
 	
 JobSubmitter.cli	

 	
 	
 JobSubmitter.SchedulingEngine	

 	
 	
 JobSubmitter.Simulation	

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Job Submitter 0+untagged.133.g5a1e521.dirty documentation

Index

 G
 | J
 | P
 | R
 | S
 | W

G

 	

 	generate_headers() (JobSubmitter.SchedulingEngine.PBSEngine method)

 	get_afterProd_cmds() (JobSubmitter.SchedulingEngine.PBSEngine method)

 	

 	get_work_directory_cmd() (JobSubmitter.SchedulingEngine.PBSEngine method)

J

 	

 	JobSubmitter (module)

 	JobSubmitter.cli (module)

 	

 	JobSubmitter.SchedulingEngine (module)

 	JobSubmitter.Simulation (module)

P

 	

 	PBSEngine (class in JobSubmitter.SchedulingEngine)

R

 	

 	read_jsonfile() (in module JobSubmitter.cli)

S

 	

 	SchedulingEngine (class in JobSubmitter.SchedulingEngine)

 	

 	Simulation (class in JobSubmitter.Simulation)

W

 	

 	writeSimulationFiles() (JobSubmitter.Simulation.Simulation method)

 Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

 _modules/JobSubmitter/Simulation.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

 		Module code »

 Source code for JobSubmitter.Simulation

from .SchedulingEngine import PBSEngine
import sys

[docs]class Simulation(object):

 """docstring for Simulation"""

 def __init__(self, json):
 """Parse the information inside the JSON file into
 class atributes."""
 if json['scheduler'] == 'pbs':
 self.scheduler = PBSEngine(self)

 # Is it an HPC job or local machine job
 self.is_HPCjob = (json['HPC_job'] == "True")
 # PBS settings
 self.queue = json['pbs_settings']['queue']
 self.walltime = json['pbs_settings']['walltime']
 self.nnodes = json['pbs_settings']['nnodes']
 self.ncpus = json['pbs_settings']['ncpus']
 self.ngpus = json['pbs_settings']['ngpus']
 self.memory = json['pbs_settings']['mem']
 self.gpu_type = json['pbs_settings']['gpu_type']
 self.host = json['pbs_settings']['host']

 # Simulation details
 self.system_name = json['simulation_details']['system_name']
 self.inpcrd_file = json['simulation_details']['inpcrd_file']
 self.topology_file = json['simulation_details']['topology_file']
 self.start_rst = json['simulation_details']['start_rst']
 self.input_file = json['simulation_details']['input_file']
 self.start_time = json['simulation_details']['start_time']
 self.final_time = json['simulation_details']['final_time']
 self.job_length = json['simulation_details']['job_length']
 self.job_directory = json['simulation_details']['job_directory']
 self.cuda_version = json['simulation_details']['cuda_version']
 self.binary_location = json['simulation_details']['binary_location']
 self.pre_simulation_cmd = json[
 'simulation_details']['pre_simulation_cmd']
 self.pre_simulation_type = json[
 'simulation_details']['pre_simulation_type']

 # Workstation details
 self.user = json['local_machine']['user']
 self.hostname = json['local_machine']['hostname']
 self.destination = json['local_machine']['destination']

 # Master node details for local TORQUE queue
 self.user_m = json['master_node']['user_m']
 self.hostname_m = json['master_node']['hostname_m']
 self.job_directory_m = json['master_node']['job_directory_m']

[docs] def writeSimulationFiles(self):
 needs_pre_simulation_file = (self.pre_simulation_type == "cpu")

 self.sch_headers = self.scheduler.generate_headers()
 # If we do the pre-simulation commands specified in the JSON file
 # then we write them to a file called pre_simulation.sh to run it
 # on a local machine
 if needs_pre_simulation_file:
 self._write_pre_simulation_CPUfile()

 self.times = self._get_Times()

 for sim_number, time_interval in self.times.items():
 self.sim_number = sim_number
 if ((sim_number == 1) and (self.start_time == 0) and
 (not needs_pre_simulation_file)):
 print(
 "The presimulation commands are going to be run on a GPU.\n")
 # Only if the user wants to run the pre-simulation commands
 # in a qsub script.
 self._write_first_step_file(time_interval)
 else:
 self._write_step_file(sim_number, time_interval)

 def _write_step_file(self, sim_number, time_interval):
 rendered_commands = self.sch_headers
 rendered_commands += self._generate_preliminary_cmds(time_interval)

 if (sim_number == 1):
 rendered_commands += "prevrst=%s\n" % self.start_rst
 else:
 rendered_commands += "prevrst=%s_%sns.rst\n" % (self.system_name,
 self.times[sim_number - 1])

 rendered_commands += self.scheduler.get_work_directory_cmd()
 rendered_commands += "cp %s/%s .\n" % (
 self.job_directory, self.input_file)
 rendered_commands += "cp %s/${prmtop} .\n" % self.job_directory
 rendered_commands += "cp %s/${prevrst} .\n\n" % self.job_directory
 if self.is_HPCjob:
 rendered_commands += "pbsexec -grace 15 "
 rendered_commands += """%s -O -i %s \\
 -o %s_${sim}ns.out -c ${prevrst} -p ${prmtop} -r %s_${sim}ns.rst \\
 -x 05_Prod_%s_${sim}ns.nc\n\n""" % (self.binary_location,
 self.input_file,
 self.system_name,
 self.system_name,
 self.system_name)
 rendered_commands += self._generate_final_cmds()

 file = open("%s_job%s.pbs" % (self.system_name,
 str(sim_number).zfill(2)), "w")
 file.write(rendered_commands)
 file.close()

 def _write_first_step_file(self, time_interval):
 simulation_cmds_rendered = self.sch_headers
 simulation_cmds_rendered += self._generate_preliminary_cmds(
 time_interval)
 simulation_cmds_rendered += "inpcrd=%s\n" % self.inpcrd_file
 simulation_cmds_rendered += self.scheduler.get_work_directory_cmd()
 simulation_cmds_rendered += "cp %s/*.in .\n" % self.job_directory
 simulation_cmds_rendered += "cp %s/*.rst .\n" % self.job_directory
 simulation_cmds_rendered += "cp %s/${prmtop} .\n" % self.job_directory
 simulation_cmds_rendered += "cp %s/${inpcrd} .\n\n" % self.job_directory

 for cmd in self.pre_simulation_cmd:
 simulation_cmds_rendered += cmd + "\n"

 if self.is_HPCjob:
 simulation_cmds_rendered += "pbsexec -grace 15 "
 simulation_cmds_rendered += """%s -O -i %s \\
 -o %s_${sim}ns.out -c %s -p ${prmtop} -r %s_${sim}ns.rst \\
 -x 05_Prod_%s_${sim}ns.nc\n\n""" % (self.binary_location,
 self.input_file,
 self.system_name,
 self.start_rst,
 self.system_name,
 self.system_name)
 simulation_cmds_rendered += self._generate_final_cmds()

 file = open("%s_job%s.pbs" % (self.system_name,
 str(1).zfill(2)), "w")
 file.write(simulation_cmds_rendered)
 file.close()

 def _write_pre_simulation_CPUfile(self):
 """Write a bash script to do the pre simulation commands as specified
 in the JSON file. Also specify what the prmtop and inprcrd files are
 from the JSON.
 """
 pre_simulation_cmds_rendered = ""

 pre_simulation_cmds_rendered += "prmtop=%s\n" % self.topology_file
 pre_simulation_cmds_rendered += "inpcrd=%s\n\n" % self.inpcrd_file

 for cmd in self.pre_simulation_cmd:
 pre_simulation_cmds_rendered += cmd + "\n"

 file = open("pre_simulation.sh", "w")
 file.write(pre_simulation_cmds_rendered)
 file.close()

 def _generate_preliminary_cmds(self, time_interval):
 """Return the usual commands that every run uses."""
 prelim_cmds = ""
 if self.is_HPCjob:
 prelim_cmds += "module load cuda/%s\n" % self.cuda_version
 prelim_cmds += "module load intel-suite\n\n"
 prelim_cmds += "prmtop=%s\n" % self.topology_file
 prelim_cmds += "sim=%s\n\n" % time_interval
 return(prelim_cmds)

 def _generate_final_cmds(self):
 """Write the commands after the production run. The first copy and remove
 commands are scheduler-specific and are implemented in the corresponding
 engine class."""
 final_cmds = self.scheduler.get_afterProd_cmds()
 final_cmds += "tar -zcvf %s/%s_${sim}ns.tgz *\n" % (self.job_directory,
 self.system_name)
 final_cmds += """rsync -avz --remove-source-files \\
 %s/%s_${sim}ns.tgz \\
 %s@%s:%s/\n""" % (self.job_directory,
 self.system_name,
 self.user,
 self.hostname,
 self.destination)
 if not self.is_HPCjob:
 final_cmds += "rm -rf /tmp/pbs.${PBS_JOBID}/\n"
 return(final_cmds)

 def _get_NumberOfJobs(self):
 """Counts how many jobs are going to be needed."""
 if self.start_time < 0:
 raise ValueError("Start time must be 0 or positive.")
 total_time = self.final_time - self.start_time
 if total_time < 0:
 raise ValueError("Total time is negative. Check your inputs!")
 if (total_time % self.job_length) != 0:
 raise ValueError(
 "Job length must be a divisor of total simulation time.")
 else:
 return(int(total_time / self.job_length) + 1)

 def _get_Times(self):
 """Returns a dictionary with the number of each simulation (starting at 1)
 and its corresponding time frame."""
 timeList = {}
 for job in range(1, self._get_NumberOfJobs()):
 if job == 1:
 time_at_start = self.start_time
 time_at_finish = time_at_start + self.job_length
 else:
 time_at_finish = self.start_time + (job * self.job_length)
 time_at_start = time_at_finish - self.job_length
 seq = (str(time_at_start).zfill(4), str(time_at_finish).zfill(4))
 timeList[job] = '-'.join(seq)
 return(timeList)

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

authors.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

Credits

Development Lead

		Juan Eiros <juaneiros@hotmail.com>

Contributors

None yet. Why not be the first?

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

JobSubmitter.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

JobSubmitter package

Submodules

JobSubmitter.SchedulingEngine module

		
class JobSubmitter.SchedulingEngine.PBSEngine(simulation)[source]

		Bases: JobSubmitter.SchedulingEngine.SchedulingEngine

		
generate_headers()[source]

		

		
get_afterProd_cmds()[source]

		

		
get_work_directory_cmd()[source]

		

		
class JobSubmitter.SchedulingEngine.SchedulingEngine(simulation)[source]

		

JobSubmitter.Simulation module

		
class JobSubmitter.Simulation.Simulation(json)[source]

		Bases: object

docstring for Simulation

		
writeSimulationFiles()[source]

		

JobSubmitter.cli module

		
JobSubmitter.cli.read_jsonfile(file)[source]

		Parse the input JSON file and return a dictionary with the info

Module contents

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

modules.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

JobSubmitter

		JobSubmitter package
		Submodules

		JobSubmitter.SchedulingEngine module

		JobSubmitter.Simulation module

		JobSubmitter.cli module

		Module contents

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up-pressed.png

_static/plus.png

history.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

History

0.1.0 (2016-10-18)

		First release on PyPI.

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

 All modules for which code is available

		JobSubmitter.SchedulingEngine

		JobSubmitter.Simulation

		JobSubmitter.cli

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

_modules/JobSubmitter/cli.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

 		Module code »

 Source code for JobSubmitter.cli

-*- coding: utf-8 -*-

from __future__ import print_function
import click
import json
import os
import shutil
from JobSubmitter.Simulation import Simulation

@click.group()
def main():
 """Console script for JobSubmitter"""
 pass

@main.command()
@click.argument('json_file', type=click.Path(exists=True))
def generate_scripts(json_file):
 """Read the JSON_FILE and write the PBS files"""
 json_file = click.format_filename(json_file)
 settings = read_jsonfile(json_file)
 simulation = Simulation(settings)
 simulation.writeSimulationFiles()

@main.command()
def skeleton():
 """Get an example example.json input file."""
 click.echo('Printing example.json file')
 script_dir = os.path.dirname(__file__) # Absolute path the script is in
 relative_path = '../data/input_example.json'
 shutil.copyfile(
 os.path.join(script_dir, relative_path), './input_example.json')

[docs]def read_jsonfile(file):
 """
 Parse the input JSON file and return a dictionary with the info
 """
 with open(file) as data:
 json_data = json.load(data)
 return(json_data)

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_modules/JobSubmitter/SchedulingEngine.html

 Navigation

 		
 index

 		
 modules |

 		Job Submitter 0+untagged.133.g5a1e521.dirty documentation »

 		Module code »

 Source code for JobSubmitter.SchedulingEngine

[docs]class SchedulingEngine:
 def __init__(self, simulation):
 self.pbs_headers = ""
 self.simulation = simulation

[docs]class PBSEngine(SchedulingEngine):
[docs] def generate_headers(self):
 if self.simulation.is_HPCjob:
 self.pbs_headers = "#PBS -lselect=%s:" % self.simulation.nnodes
 self.pbs_headers += "ncpus=%s:" % self.simulation.ncpus
 self.pbs_headers += "ngpus=%s:" % self.simulation.ngpus
 self.pbs_headers += "mem=%s:" % self.simulation.memory

 if self.simulation.queue == 'gpgpu':
 self.pbs_headers += "gpu_type=%s\n" % self.simulation.gpu_type
 elif self.simulation.queue == 'pqigould':
 self.pbs_headers += "host=%s\n" % self.simulation.host
 else:
 print("""Queue wasn't gpgpu or pqigould. Assume nothing and print
 in the PBS header both the gpu_type and the host.\n""")
 self.pbs_headers += "gpu_type=%s\n" % self.simulation.gpu_type
 self.pbs_headers += "host=%s\n" % self.simulation.host

 self.pbs_headers += "#PBS -lwalltime=%s\n" % self.simulation.walltime
 self.pbs_headers += "#PBS -q %s\n\n" % self.simulation.queue
 else:
 self.pbs_headers = "#PBS -l nodes=%s" % self.simulation.host
 self.pbs_headers += ":gpus=%s:ppn=%s\n" % (self.simulation.ngpus,
 self.simulation.ncpus)
 self.pbs_headers += "#PBS -l mem=%s\n" % self.simulation.memory
 self.pbs_headers += "#PBS -l walltime=%s\n" % self.simulation.walltime
 self.pbs_headers += "#PBS -q %s\n" % self.simulation.queue
 self.pbs_headers += "#PBS -j oe\n\n"

 return(self.pbs_headers)

[docs] def get_work_directory_cmd(self):
 # If working on a local machine, we first have to copy the files from
 # the master node to the compute node, as well as creating the /tmp
 # directory where the job will run
 if self.simulation.is_HPCjob:
 return("cd /tmp/pbs.${PBS_JOBID}\n")
 else:
 work_dir_cmd = ""
 work_dir_cmd += "mkdir -p %s && " % self.simulation.job_directory
 work_dir_cmd += "cd %s\n" % self.simulation.job_directory
 work_dir_cmd += "scp %s@%s:%s/* .\n" % (self.simulation.user_m,
 self.simulation.hostname_m,
 self.simulation.job_directory_m)
 work_dir_cmd += "mkdir -p /tmp/pbs.${PBS_JOBID} && "
 work_dir_cmd += "cd /tmp/pbs.${PBS_JOBID}\n"
 return(work_dir_cmd)

[docs] def get_afterProd_cmds(self):
 self.afterProd_cmd = ""
 self.afterProd_cmd += "cp /tmp/pbs.${PBS_JOBID}/%s_${sim}ns.rst %s/\n" % (self.simulation.system_name, self.simulation.job_directory)
 if (self.simulation.sim_number == 1) and (self.simulation.start_time == 0):
 self.afterProd_cmd += "rm /tmp/pbs.${PBS_JOBID}/${inpcrd}\n"
 else:
 self.afterProd_cmd += "rm /tmp/pbs.${PBS_JOBID}/${prevrst}\n"
 return(self.afterProd_cmd)

 © Copyright 2016, Juan Eiros.
 Created using Sphinx 1.3.5.

